
Solution Key to re-exam in Financial Econometrics A: Volatility
Modelling, February 2016
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Question A:

Consider the ARCH model given by,

xt = σtηt, t = 1, 2, ...., T (1)

with ηt i.i.d.N(0, 1) and

σ2t = ω + αx2t−1 + βz2t−1. (2)

Here zt is some exogenous covariate, as for example the realized volatility.

Question A.1: Suppose that β = 0 and recall that Eη4t = 3. Derive a
condition for xt to be weakly mixing and such that Ex4t <∞.

Solution: For β = 0 the transition density of xt is given by f(xt|xt−1) =
1√

2π(ω+αx2t−1)
exp

(
− x2t
2(ω+αx2t−1)

)
which is strictly positive (provided that ω >

0) and continuous in xt and xt−1. This enables us to establish the drift
criterion for xt. In order to ensure that Ex4t <∞, we choose the drift function
δ(x) = 1 + x4. Standard derivations from the lectures yield that α < 1/

√
3

is a suffi cient condition for xt being weakly mixing with Ex4t <∞.

Question A.2: Now consider the case of β > 0, ω > 0 and α ≥ 0. Assume
that also zt is i.i.d.N(0, σ2z), and that zt and ηt are independent. Define the
bivariate vector vt = (xt, zt)

′ and observe that the density of vt conditional
on vt−1 is given by,

f (vt|vt−1) =
1

2π

1√
σ2zσ

2
t

exp

(
−1
2

{
x2t
σ2t
+
z2t
σ2z

})
. (3)

Argue that vt is a Markov chain for which the transition density f (·|·) is
such that the drift criterion can be applied.
Next, with drift function δ (vt) = 1 + v′tvt = 1 + x2t + z2t and v = (x, z)

′ ,
show that for some constant c

E (δ (vt) |vt−1 = v) ≤ c+max (α, β)
(
x2 + z2

)
. (4)

Conclude that if max (α, β) < 1, then vt is weakly mixing with E ‖vt‖2 ≤
E[x2t ] + E[z2t ] <∞.
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Solution: The Markov chain has a nice transition density due to the fact that
f(vt|vt−1) is strictly positive and continuous in vt and vt−1. Next,
E (δ (vt) |vt−1 = v) = E

(
1 + x2t + z2t |vt−1 = v

)
= 1 + E

(
x2t | (xt−1, zt−1)

′ = (x, z)′
)
+ E

(
z2t | (xt−1, zt−1)

′ = (x, z)′
)

= 1 + E
(
σ2t η

2
t | (xt−1, zt−1)

′ = (x, z)′
)
+ E

(
z2t
)

= 1 + ω + αx2 + βz2 + σ2z
≤ 1 + ω + σ2z +max(α, β)(x

2 + z2)

= c+max(α, β)v′v.

By the usual arguments the drift criterion is satisfied if max(α, β) < 1.

Question A.3: With LT (ω, α, β) the log-likelihood function for the ARCH
model, it holds that the score for β is given by,

S (ω, α, β) = ∂ logLT (ω, α, β) /∂β =
T∑
t=1

1

2

(
x2t
σ2t
− 1
)
z2t−1
σ2t

. (5)

Show that with ω0 > 0, α0 < 1 and 0 < βL ≤ β0 < 1 then under the condition
that vt = (xt, zt)

′ is weakly mixing,

1√
T
S (ω0, α0, β0)

d→ N
(
0,
ν

2

)
, (6)

where ν = E[(z2t−1/
(
ω0 + α0x

2
t−1 + β0z

2
t−1
)
)2] ≤ 1/β2L <∞.

Solution: The asymptotic normality of T−1/2S (ω0, α0, β0) is established using
the CLT for martingale differences from the lecture notes. Evaluated at
θ0 = (ω0, α0, β0)

′ ,

1

2

(
x2t

σ2t (θ0)
− 1
)

z2t−1
σ2t (θ0)

=
1

2
(η2t − 1)

z2t−1
ω0 + α0x2t−1 + β0z2t−1

= f(vt, vt−1),

so S (ω0, α0, β0) =
∑T

t=1 f(vt, vt−1). Using that that vt is weakly mixing. It
hence suffi ces to show that E[f(vt, vt−1)|vt−1] = 0 and E[f 2(vt, vt−1)] < ∞̇.
First,

E[f(vt, vt−1)|vt−1] = E

[
1

2
(η2t − 1)

z2t−1
ω0 + α0x2t−1 + β0z2t−1

|vt−1
]

=
1

2

z2t−1
ω0 + α0x2t−1 + β0z2t−1

E
[
(η2t − 1)|vt−1

]
=
1

2

z2t−1
ω0 + α0x2t−1 + β0z2t−1

E
[
(η2t − 1)

]
= 0.
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Next,

E[f 2(vt, vt−1)] = E

[
1

4
(η2t − 1)2

(
z2t−1

ω0 + α0x2t−1 + β0z2t−1

)2]

=
1

4
E
[
(η2t − 1)2

]
E

[(
z2t−1

ω0 + α0x2t−1 + β0z2t−1

)2]

=
1

2
E

[(
z2t−1

ω0 + α0x2t−1 + β0z2t−1

)2]
≤ 1
2

1

β20
≤ 1
2

1

β2L
<∞,

since β0 ≥ βL > 0. By the CLT for martingale differences, we conclude that

T−1/2S (ω0, α0, β0)
D→ N(0, E[f 2(vt, vt−1)]) as T →∞,

where E[f 2(vt, vt−1)] = 1
2
ν.

Question A.4: With zt Realized volatility for S&P500 and xt log-returns
on S&P500, ML estimation gave:

Output: MLE of ARCH with RV
α̂ = 0.11 std.deviation(α̂) = 0.012
β̂ = 0.09 std.deviation(β̂) = 0.091

What would you conclude in terms of the importance of Realized volatil-
ity?

Solution: Based on the estimation output one may conclude (based on the
usual critical values) that α > 0 whereas one cannot reject that β = 0. This
suggests that the realized volatility is not an important exogenous variable
in the volatility equation σ2t . The very good answer might relate this to
Question A.3 where it was used that β0 > 0 in order to show that the
variance of the score, i.e. E[f 2(vt, vt−1)], is finite. When β0 = 0 we probably
need a condtion such as Ez4t−1 <∞. So in order to test whether β = 0 might
require stronger conditions on vt.
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Question B:

Consider the switching-ARCH(1) model given by

yt = σtzt

σ2t = ω0 + ω11(St=1) + αy2t−1

where zt and St are independent, with zt i.i.d.N(0, 1) and St can take value
1 or 2. Note that 1(St=1) = 1 if St = 1 and 1(St=1) = 0 if St = 2. Moreover,
ω0 > 0, ω1 ≥ 0, and α ≥ 0.

Question B.1: Suppose that α = ω1 = 0. Explain if yt is weakly mixing.

Solution: When α = ω1 = 0, yt = ω
1/2
0 zt meaning that yt is i.i.d. and hence

weakly mixing.

Question B.2: Next, assume that St is a Markov chain evolving according
to the transition probabilities pij = P (St = j|St−1 = i), i, j = 1, 2 where the
transition probabilities pij are such that St is weakly mixing.
Suppose that α = 0 while ω1 > 0. Explain if σ2t is weakly mixing. Is yt

weakly mixing?

Solution: When α = 0, yt is simply a 2-state Markov Swithcing Stochastic
Volatility process. For this case, we have that σ2t is weakly mixing, because
St is. Moreover, from the lecture notes we have that yt is weakly mixing
because σ2t is.

Question B.3: Suppose that St is i.i.d. with P (St = 1) = p and P (St =
2) = 1− p. State the density of yt given yt−1 and St = 1. That is, find

f(yt|yt−1, St = 1). (7)

Likewise, find f(yt|yt−1, St = 2).

Solution:

f(yt|yt−1, St) =
1√
2πσ2t

exp

(
− y2t
2σ2t

)
with σ2t = ω0 + ω11(St=1) + αy2t−1.

Hence

f(yt|yt−1, St = 1) =
1√

2π(ω0 + ω1 + αy2t−1)
exp

(
− y2t
2(ω0 + ω1 + αy2t−1)

)
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and

f(yt|yt−1, St = 2) =
1√

2π(ω0 + αy2t−1)
exp

(
− y2t
2(ω0 + αy2t−1)

)
.

Question B.4: We want to estimate the model parameters θ = (ω0, ω1, α, p)
based on the EM algorithm. First, we seek to compute the EM log-likelihood
function LEM(θ) which we use in the expectation step (the E-step).
Treating (St)

T
t=1 as observed variables, consider the infeasible log-likelihood

function defined as,

L(y1, ..., yT , S1, ..., ST ; θ) =

T∑
t=2

{
1(St=1)[log f(yt|yt−1, St = 1) + log(p)]

+1(St=2)[log f(yt|yt−1, St = 2) + log(1− p)]
}
.

Recall that the E-step relies on making a guess of θ, θ = θ̃ say, and next
computing

LEM(θ) = Eθ̃[L(y1, ..., yT , S1, ..., ST ; θ)|y1, ..., yT ].

This includes the computation of

P ∗t (1) := Eθ̃[1(St=1)|y1, ..., yT ] = fθ̃ (St = 1|y1, ..., yT ) ,

where fθ̃ (St = 1|y1, ..., yT ) denotes the probability (or density) f (St = 1|y1, ..., yT )
evaluated at θ̃.
Show that, under the conditions in Question B.3 that for the case of t = 2,

f(S2 = 1|y1, y2, ..., yT ) =
f(y2, ..., yT |S2 = 1, y1)f(S2 = 1, y1)∑2

i=1 f(S2 = i, y1, ..., yT )
.

Solution:

f (S2 = 1|y1, ..., yT ) =
f(S2 = 1, y1, ..., yT )

f(y1, ..., yT )

=
f(y2, ..., yT |S2 = 1, y1)f(S2 = 1, y1)

f(y1, ..., yT )

=
f(y2, ..., yT |S2 = 1, y1)f(S2 = 1, y1)∑2

i=1 f(st = i, y1, ..., yT )
.

Question B.5: Using the above, and with P ∗t (2) = fθ̃ (St = 2|y1, ..., yT ) it
follows that
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LEM(θ) =
T∑
t=2

{P ∗t (1) [log f(yt|yt−1, St = 1) + log(p)]

+P ∗t (2) [log f(yt|yt−1, St = 2) + log(1− p)]} .

Explain how this EM-log-likelihood function can be used to find an estimate
of θ.

Solution: Given P ∗t (1) and P
∗
t (2), θ is estimated by maximizing LEM(θ)

over θ. One should relate this to the EM algorithm. The initial choice θ = θ̃
may not be good, and one can use the estimate of θ for the computation of
new smoothed probabilities P ∗t (1) and P

∗
t (2) in order to find a new estimate

of θ. This procedure will typically be repeated "until convergence". The
computation of P ∗t (1) and P

∗
t (2) will typically be based on the forward and

backward probabilities.
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