Solution Key to re-exam in Financial Econometrics A: Volatility Modelling, February 2016

Question A:

Consider the ARCH model given by,

$$x_t = \sigma_t \eta_t, \quad t = 1, 2, \dots, T \tag{1}$$

with η_t i.i.d.N(0, 1) and

$$\sigma_t^2 = \omega + \alpha x_{t-1}^2 + \beta z_{t-1}^2.$$
 (2)

Here z_t is some exogenous covariate, as for example the realized volatility.

Question A.1: Suppose that $\beta = 0$ and recall that $E\eta_t^4 = 3$. Derive a condition for x_t to be weakly mixing and such that $Ex_t^4 < \infty$.

Solution: For $\beta = 0$ the transition density of x_t is given by $f(x_t|x_{t-1}) = \frac{1}{\sqrt{2\pi(\omega + \alpha x_{t-1}^2)}} \exp\left(-\frac{x_t^2}{2(\omega + \alpha x_{t-1}^2)}\right)$ which is strictly positive (provided that $\omega > 0$) and continuous in x_t and x_{t-1} . This enables us to establish the drift criterion for x_t . In order to ensure that $Ex_t^4 < \infty$, we choose the drift function $\delta(x) = 1 + x^4$. Standard derivations from the lectures yield that $\alpha < 1/\sqrt{3}$ is a sufficient condition for x_t being weakly mixing with $Ex_t^4 < \infty$.

Question A.2: Now consider the case of $\beta > 0, \omega > 0$ and $\alpha \ge 0$. Assume that also z_t is i.i.d.N $(0, \sigma_z^2)$, and that z_t and η_t are independent. Define the bivariate vector $v_t = (x_t, z_t)'$ and observe that the density of v_t conditional on v_{t-1} is given by,

$$f(v_t|v_{t-1}) = \frac{1}{2\pi} \frac{1}{\sqrt{\sigma_z^2 \sigma_t^2}} \exp\left(-\frac{1}{2} \left\{\frac{x_t^2}{\sigma_t^2} + \frac{z_t^2}{\sigma_z^2}\right\}\right).$$
 (3)

Argue that v_t is a Markov chain for which the transition density $f(\cdot|\cdot)$ is such that the drift criterion can be applied.

Next, with drift function $\delta(v_t) = 1 + v'_t v_t = 1 + x_t^2 + z_t^2$ and v = (x, z)', show that for some constant c

$$E\left(\delta\left(v_{t}\right)|v_{t-1}=v\right) \leq c + \max\left(\alpha,\beta\right)\left(x^{2}+z^{2}\right).$$
(4)

Conclude that if max $(\alpha, \beta) < 1$, then v_t is weakly mixing with $E ||v_t||^2 \le E[x_t^2] + E[z_t^2] < \infty$.

Solution: The Markov chain has a nice transition density due to the fact that $f(v_t|v_{t-1})$ is strictly positive and continuous in v_t and v_{t-1} . Next,

$$E(\delta(v_t) | v_{t-1} = v) = E(1 + x_t^2 + z_t^2 | v_{t-1} = v)$$

= 1 + E(x_t^2 | (x_{t-1}, z_{t-1})' = (x, z)') + E(z_t^2 | (x_{t-1}, z_{t-1})' = (x, z)')
= 1 + E(\sigma_t^2 \eta_t^2 | (x_{t-1}, z_{t-1})' = (x, z)') + E(z_t^2)
= 1 + \omega + \alpha x^2 + \beta z^2 + \sigma_z^2
\leq 1 + \omega + \sigma_z^2 + \max(\alpha, \beta)(x^2 + z^2)
= c + \max(\alpha, \beta)v'v.

By the usual arguments the drift criterion is satisfied if $\max(\alpha, \beta) < 1$.

Question A.3: With $L_T(\omega, \alpha, \beta)$ the log-likelihood function for the ARCH model, it holds that the score for β is given by,

$$S(\omega, \alpha, \beta) = \partial \log L_T(\omega, \alpha, \beta) / \partial \beta = \sum_{t=1}^T \frac{1}{2} \left(\frac{x_t^2}{\sigma_t^2} - 1 \right) \frac{z_{t-1}^2}{\sigma_t^2}.$$
 (5)

Show that with $\omega_0 > 0$, $\alpha_0 < 1$ and $0 < \beta_L \le \beta_0 < 1$ then under the condition that $v_t = (x_t, z_t)'$ is weakly mixing,

$$\frac{1}{\sqrt{T}}S\left(\omega_{0},\alpha_{0},\beta_{0}\right) \xrightarrow{d} N\left(0,\frac{\nu}{2}\right),\tag{6}$$

where $\nu = E[(z_{t-1}^2/(\omega_0 + \alpha_0 x_{t-1}^2 + \beta_0 z_{t-1}^2))^2] \le 1/\beta_L^2 < \infty.$

Solution: The asymptotic normality of $T^{-1/2}S(\omega_0, \alpha_0, \beta_0)$ is established using the CLT for martingale differences from the lecture notes. Evaluated at $\theta_0 = (\omega_0, \alpha_0, \beta_0)'$,

$$\frac{1}{2} \left(\frac{x_t^2}{\sigma_t^2(\theta_0)} - 1 \right) \frac{z_{t-1}^2}{\sigma_t^2(\theta_0)} = \frac{1}{2} (\eta_t^2 - 1) \frac{z_{t-1}^2}{\omega_0 + \alpha_0 x_{t-1}^2 + \beta_0 z_{t-1}^2} = f(v_t, v_{t-1}),$$

so $S(\omega_0, \alpha_0, \beta_0) = \sum_{t=1}^T f(v_t, v_{t-1})$. Using that that v_t is weakly mixing. It hence suffices to show that $E[f(v_t, v_{t-1})|v_{t-1}] = 0$ and $E[f^2(v_t, v_{t-1})] < \dot{\infty}$. First,

$$E[f(v_t, v_{t-1})|v_{t-1}] = E\left[\frac{1}{2}(\eta_t^2 - 1)\frac{z_{t-1}^2}{\omega_0 + \alpha_0 x_{t-1}^2 + \beta_0 z_{t-1}^2}|v_{t-1}\right]$$
$$= \frac{1}{2}\frac{z_{t-1}^2}{\omega_0 + \alpha_0 x_{t-1}^2 + \beta_0 z_{t-1}^2}E\left[(\eta_t^2 - 1)|v_{t-1}\right]$$
$$= \frac{1}{2}\frac{z_{t-1}^2}{\omega_0 + \alpha_0 x_{t-1}^2 + \beta_0 z_{t-1}^2}E\left[(\eta_t^2 - 1)\right]$$
$$= 0.$$

Next,

$$E[f^{2}(v_{t}, v_{t-1})] = E\left[\frac{1}{4}(\eta_{t}^{2} - 1)^{2}\left(\frac{z_{t-1}^{2}}{\omega_{0} + \alpha_{0}x_{t-1}^{2} + \beta_{0}z_{t-1}^{2}}\right)^{2}\right]$$
$$= \frac{1}{4}E\left[(\eta_{t}^{2} - 1)^{2}\right]E\left[\left(\frac{z_{t-1}^{2}}{\omega_{0} + \alpha_{0}x_{t-1}^{2} + \beta_{0}z_{t-1}^{2}}\right)^{2}\right]$$
$$= \frac{1}{2}E\left[\left(\frac{z_{t-1}^{2}}{\omega_{0} + \alpha_{0}x_{t-1}^{2} + \beta_{0}z_{t-1}^{2}}\right)^{2}\right]$$
$$\leq \frac{1}{2}\frac{1}{\beta_{0}^{2}} \leq \frac{1}{2}\frac{1}{\beta_{L}^{2}} < \infty,$$

since $\beta_0 \geq \beta_L > 0$. By the CLT for martingale differences, we conclude that

$$T^{-1/2}S(\omega_0, \alpha_0, \beta_0) \xrightarrow{D} N(0, E[f^2(v_t, v_{t-1})]) \text{ as } T \to \infty,$$

where $E[f^2(v_t, v_{t-1})] = \frac{1}{2}\nu$.

Question A.4: With z_t Realized volatility for S&P500 and x_t log-returns on S&P500, ML estimation gave:

Output: MLE of ARCH with RV	
$\hat{\alpha}=0.11$	std.deviation($\hat{\alpha}$) = 0.012
$\hat{\beta} = 0.09$	std.deviation($\hat{\beta}$) = 0.091

What would you conclude in terms of the importance of Realized volatility?

Solution: Based on the estimation output one may conclude (based on the usual critical values) that $\alpha > 0$ whereas one cannot reject that $\beta = 0$. This suggests that the realized volatility is not an important exogenous variable in the volatility equation σ_t^2 . The very good answer might relate this to Question A.3 where it was used that $\beta_0 > 0$ in order to show that the variance of the score, i.e. $E[f^2(v_t, v_{t-1})]$, is finite. When $\beta_0 = 0$ we probably need a condition such as $Ez_{t-1}^4 < \infty$. So in order to test whether $\beta = 0$ might require stronger conditions on v_t .

Question B:

Consider the switching-ARCH(1) model given by

$$y_t = \sigma_t z_t$$

$$\sigma_t^2 = \omega_0 + \omega_1 \mathbf{1}_{(S_t=1)} + \alpha y_{t-1}^2$$

where z_t and S_t are independent, with z_t i.i.d.N(0,1) and S_t can take value 1 or 2. Note that $1_{(S_t=1)} = 1$ if $S_t = 1$ and $1_{(S_t=1)} = 0$ if $S_t = 2$. Moreover, $\omega_0 > 0, \omega_1 \ge 0$, and $\alpha \ge 0$.

Question B.1: Suppose that $\alpha = \omega_1 = 0$. Explain if y_t is weakly mixing.

Solution: When $\alpha = \omega_1 = 0$, $y_t = \omega_0^{1/2} z_t$ meaning that y_t is i.i.d. and hence weakly mixing.

Question B.2: Next, assume that S_t is a Markov chain evolving according to the transition probabilities $p_{ij} = P(S_t = j | S_{t-1} = i), i, j = 1, 2$ where the transition probabilities p_{ij} are such that S_t is weakly mixing.

Suppose that $\alpha = 0$ while $\omega_1 > 0$. Explain if σ_t^2 is weakly mixing. Is y_t weakly mixing?

Solution: When $\alpha = 0$, y_t is simply a 2-state Markov Swithcing Stochastic Volatility process. For this case, we have that σ_t^2 is weakly mixing, because S_t is. Moreover, from the lecture notes we have that y_t is weakly mixing because σ_t^2 is.

Question B.3: Suppose that S_t is i.i.d. with $P(S_t = 1) = p$ and $P(S_t = 2) = 1 - p$. State the density of y_t given y_{t-1} and $S_t = 1$. That is, find

$$f(y_t|y_{t-1}, S_t = 1). (7)$$

Likewise, find $f(y_t|y_{t-1}, S_t = 2)$.

Solution:

$$f(y_t|y_{t-1}, S_t) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{y_t^2}{2\sigma_t^2}\right) \quad \text{with } \sigma_t^2 = \omega_0 + \omega_1 \mathbf{1}_{(S_t=1)} + \alpha y_{t-1}^2.$$

Hence

$$f(y_t|y_{t-1}, S_t = 1) = \frac{1}{\sqrt{2\pi(\omega_0 + \omega_1 + \alpha y_{t-1}^2)}} \exp\left(-\frac{y_t^2}{2(\omega_0 + \omega_1 + \alpha y_{t-1}^2)}\right)$$

and

$$f(y_t|y_{t-1}, S_t = 2) = \frac{1}{\sqrt{2\pi(\omega_0 + \alpha y_{t-1}^2)}} \exp\left(-\frac{y_t^2}{2(\omega_0 + \alpha y_{t-1}^2)}\right)$$

Question B.4: We want to estimate the model parameters $\theta = (\omega_0, \omega_1, \alpha, p)$ based on the EM algorithm. First, we seek to compute the EM log-likelihood function $L_{EM}(\theta)$ which we use in the expectation step (the E-step). Treating $(S_t)_{t=1}^T$ as observed variables, consider the infeasible log-likelihood function defined as,

$$L(y_1, ..., y_T, S_1, ..., S_T; \theta) = \sum_{t=2}^T \left\{ 1_{(S_t=1)} [\log f(y_t | y_{t-1}, S_t = 1) + \log(p)] + 1_{(S_t=2)} [\log f(y_t | y_{t-1}, S_t = 2) + \log(1-p)] \right\}.$$

Recall that the E-step relies on making a guess of $\theta,\,\theta=\tilde{\theta}$ say, and next computing

$$L_{EM}(\theta) = E_{\tilde{\theta}}[L(y_1, ..., y_T, S_1, ..., S_T; \theta) | y_1, ..., y_T].$$

This includes the computation of

$$P_t^*(1) := E_{\tilde{\theta}}[1_{(S_t=1)}|y_1, ..., y_T] = f_{\tilde{\theta}}(S_t = 1|y_1, ..., y_T)$$

where $f_{\tilde{\theta}}(S_t = 1|y_1, ..., y_T)$ denotes the probability (or density) $f(S_t = 1|y_1, ..., y_T)$ evaluated at $\tilde{\theta}$.

Show that, under the conditions in Question B.3 that for the case of t = 2,

$$f(S_2 = 1 | y_1, y_2, ..., y_T) = \frac{f(y_2, ..., y_T | S_2 = 1, y_1) f(S_2 = 1, y_1)}{\sum_{i=1}^2 f(S_2 = i, y_1, ..., y_T)}$$

Solution:

$$f(S_2 = 1|y_1, ..., y_T) = \frac{f(S_2 = 1, y_1, ..., y_T)}{f(y_1, ..., y_T)}$$
$$= \frac{f(y_2, ..., y_T|S_2 = 1, y_1)f(S_2 = 1, y_1)}{f(y_1, ..., y_T)}$$
$$= \frac{f(y_2, ..., y_T|S_2 = 1, y_1)f(S_2 = 1, y_1)}{\sum_{i=1}^2 f(s_t = i, y_1, ..., y_T)}$$

Question B.5: Using the above, and with $P_t^*(2) = f_{\tilde{\theta}}(S_t = 2|y_1, ..., y_T)$ it follows that

$$L_{EM}(\theta) = \sum_{t=2}^{T} \left\{ P_t^*(1) \left[\log f(y_t | y_{t-1}, S_t = 1) + \log(p) \right] + P_t^*(2) \left[\log f(y_t | y_{t-1}, S_t = 2) + \log(1-p) \right] \right\}.$$

Explain how this EM-log-likelihood function can be used to find an estimate of θ .

Solution: Given $P_t^*(1)$ and $P_t^*(2)$, θ is estimated by maximizing $L_{EM}(\theta)$ over θ . One should relate this to the EM algorithm. The initial choice $\theta = \tilde{\theta}$ may not be good, and one can use the estimate of θ for the computation of new smoothed probabilities $P_t^*(1)$ and $P_t^*(2)$ in order to find a new estimate of θ . This procedure will typically be repeated "until convergence". The computation of $P_t^*(1)$ and $P_t^*(2)$ will typically be based on the forward and backward probabilities.